2 resultados para Statistical models

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to gain an understanding of the effects of population heterogeneity, missing data, and causal relationships on parameter estimates from statistical models when analyzing change in medication use. From a public health perspective, two timely topics were addressed: the use and effects of statins in populations in primary prevention of cardiovascular disease and polypharmacy in older population. Growth mixture models were applied to characterize the accumulation of cardiovascular and diabetes medications among apparently healthy population of statin initiators. The causal effect of statin adherence on the incidence of acute cardiovascular events was estimated using marginal structural models in comparison with discrete-time hazards models. The impact of missing data on the growth estimates of evolution of polypharmacy was examined comparing statistical models under different assumptions for missing data mechanism. The data came from Finnish administrative registers and from the population-based Geriatric Multidisciplinary Strategy for the Good Care of the Elderly study conducted in Kuopio, Finland, during 2004–07. Five distinct patterns of accumulating medications emerged among the population of apparently healthy statin initiators during two years after statin initiation. Proper accounting for time-varying dependencies between adherence to statins and confounders using marginal structural models produced comparable estimation results with those from a discrete-time hazards model. Missing data mechanism was shown to be a key component when estimating the evolution of polypharmacy among older persons. In conclusion, population heterogeneity, missing data and causal relationships are important aspects in longitudinal studies that associate with the study question and should be critically assessed when performing statistical analyses. Analyses should be supplemented with sensitivity analyses towards model assumptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.